
The Personalized Services in CADAL Digital Library ∗

Yin Zhang
the College of Computer

Science
ZheJiang University,
HangZhou, China

zhangyin98@zju.edu.cn

Jiangqin Wu
the College of Computer

Science
ZheJiang University,
HangZhou, China

wujq@zju.edu.cn

Yueting Zhuang
the College of Computer

Science
ZheJiang University,
HangZhou, China

yzhuang@zju.edu.cn
Cheng Ma

ZheJiang University,
HangZhou, China

mach416@gmail.com

Chuan Yuan
ZheJiang University,
HangZhou, China

yc8244@163.com

Chunhe Wang
ZheJiang University,
HangZhou, China

chunhezju@yahoo.com.cn

ABSTRACT
CADAL is a great digital library project of digitizing one
million digital books and publishing them to the internet
users. It’s obvious that users confront with the information
overload problem when visiting the CADAL portal. There-
fore, we have been concerned with providing useful and flex-
ible personalization services to reduce the users’ time and
energy cost of finding interesting information. We have a ex-
tensible framework for personalization services in CADAL,
including frontend UI and backend module. Since the log
data is plentiful and easily recorded, it’s our initial step to
construct the recommender system based on the massive log
data. The approach implemented by us is based on two kinds
of data structure: red-black header tree and prefix subtree.
The results of experiments on real-world log data confirm
the efficiency and excellent scalability of our approach with
the large number of items and sessions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Experimentation

Keywords
Personalization, Web Usage Mining, Sequence Mining, Rec-
ommender, Web Logs

∗This work is supported by National Natural Science
Foundation of China (No.60525108,No.60533090), China-
American Digital Academic Library project funded by
State Development and Reform Committee under Grant
No.1659[2004] , and Program for Changjiang Scholars and
Innovative Research Team in University (IRT0652).

1. INTRODUCTION
The goal of CADAL(China-American Digital Academic Li-
brary) project is to build a large scale digital collection of
one million books, which are accessible to everyone over the
Internet. CADAL was funded by China Education Ministry
and State Development and Reform Committee, and was
also part of Universal Digital Library. Now the number of
digitized book is above one million, which is a great step
to store all literatures about Chinese traditional civilization
and modern science, covering every aspects of humankind
knowledge. All the digitized contents have been transferred
to the Library of Zhejiang University, in which the project
administrative center locates. The College of Computer Sci-
ence in Zhejiang University has undertaken the develop-
ment of key technologies sustaining the portal of CADAL
(http://www.cadal.zju.edu.cn) [9, 10] since 2003, which aim
to make it easy for users over Internet to search or browse
what they are interested in explicitly or implicitly.

With the large increase of the number of digitized book avail-
able to users, it is imperative to provide the personalized
services to reduce the problem of information overload for
users during the development of the portal. Up to now, rule
and mining approach have been designed, implemented and
delivered to serve the users. In the remainder of this paper,
the architecture of personalized services in CADAL portal
is to be described in section 2, which briefly covers the user
interface based on web 2.0 techniques, the rule approach and
recommendation based on mining techniques. In section 3 is
how to mine the frequent sequential access pattern and then
predict the recommendation. The results of experiments of
mining approach proposed by us is described in Section 4.We
draw a conclusion and make a future work plan in Section
5.

2. THE ARCHITECTURE OF PERSONAL-
IZED SERVICES

Figure 1 shows the architecture of personalized services in
CADAL portal, which are partitioned into frontend and
backend. The users interact with portal through frontend i.e
Personalized Index Page, Reader Page, Setting Page. The
individual reads the content of book through Reader page,
at the same time the logging module of portal records all
book pages read by him/her. Reader page also provides

MySpace

Reader

Setting

My Favoriate

My Bookmark

Logging

My Rule

Preprocessing

Session
Identification

Sequence
Pattern
Mining

Prediction

Rule Parsing

Recommendation
Query

Language

Recommendation
Agent

UI:

Figure 1: The current architecture of CADAL Per-
sonalized Services

functionality to make it easy for user to bookmark the book
pages of interest and add current book to his personal collec-
tion. Moreover, one can set the personalized rules through
Setting page, which are regarded as one’s preference. The
backend will parse all the inputted rules to generate con-
straint set, which is the input of recommendation agent to
match and filter out the related books. The preprocessing,
transaction identification and sequence pattern mining mod-
ule are applied on the logs recorded by logging module to
discover the frequent sequential access pattern and then do
the recommendation.

It is our objective to reduce as much time and effort cost as
possible for users to get what they are interested in. Thus we
have exploited Ajax 2.0 techniques to put all personal and
filtered information related to individual user into the Per-
sonalized Index page, through which one can quickly outlines
all aspects of novel information added into Digital Library
recently and implicit knowledge discovered by background
mining algorithm. The web personalized index page (see fig-
ure 2) is partitioned into many square areas, which can be
classified into four category. One category is responsible to
”my favorite book” chosen by user itself. Another category
is ”my bookmark” added by user itself when reading some
books. The third category is the list of filtered books by por-
tal system according to personalized rule supplied by user
itself. The last category is the list of books recommended
by the frequent sequence pattern mining algorithm applied
on accumulated user browsing logs. The details of personal-
ized rule and mining algorithm are to be discussed in later
sections.

3. RECOMMENDATION BASED ON SEQUEN-
TIAL PATTERN MINING

3.1 Motivation
In the past decade, web usage mining defined by [1] has be-
come an important research area, which focuses on predict-
ing and learning users’ preferences on the internet. Most of
the studies try to discover all association rules prior to gen-
erating recommendations, while we are more interested in
real-time dynamic recommendation. Several studies using
tree structure have been proposed. [2] proposed a frequent
sequences tree (FS-tree) structure for mining the web users’
behavior over time. [3] proposed a WAP-tree for mining
task. The WAP-tree is similar to the FP-tree proposed by
Han et al. [5].

Figure 2: The entry page of CADAL Personalized
Space

In CADAL portal, we initially adopted a special process
to transform the log data to a condensed navigational pat-
tern tree proposed by [6]. Soon we found the problem that
original NP-tree algorithms didn’t take the large number
of items into account, but there are one million books in
CADAL with which previous NP-tree algorithms don’t scale
up. Therefore we utilized the red-black header tree [7, 8] in-
stead of the previous header link list, then the construction
time of NP-tree is greatly shortened. Furthermore, we dis-
covered that RB-tree’s log(n) insert and search cost at worst
case can also contribute to the improvement of performance
of finding the first item in the session being processed and
generating the recommendation. Finally we compute the lift
[4], rather than the traditional support, in order to generate
a few more appropriate recommendations.

3.2 Problem Statement
Let the set of available books be B = {B1, B2, · · · , Bn}, and
T = {(1, Bi), (2, Bj), · · · , (n, Bk)} is an sequence of books
accessed during user’s single visit to portal ,where the item
(i, Bk) represents the kth book was accessed the ith time
within a reading session T . In our current system imple-
mentation, preprocess module identifies the log lines related
to book access in the raw log files, with irrelevant items re-
moved, e.g. gif, jpg. Session identification module divides
book access sequence into different sessions if the time be-
tween book accesses exceeds the default timeout limit of 30
minutes. Thus all the identified sessions make up the read-
ing trail database RDB = {t1, t2, · · · , tl}.

We denote n-sequential pattern as a historical sequential
pattern P containing n items. The occurrence frequency of
a sequential pattern P is the number of sessions containing
P in RDB. P is a frequent sequential pattern if P ’s lift
satisfies a predefined minimum lift threshold, at least 1. In
a word, we are concerned with predicting the next |Pa|+1th
book according to the active user’s historical reading pattern

itemName count childs. . .
Root Node:

itemName count childNodeLink. . . nodeLink
Prefix Subtree Node:

itemName count color leftLink rightLink topLink headLink tailLink
Header Node:

Figure 3: The format of three kinds of node

Pa, given a reading trail database RDB, and a minimum lift
threshold of 1. The details of our approach are described in
the next sections.

3.3 Definition of Navigational Pattern Tree with
Red-Black Header Tree

We utilized data structure and related algorithms of navi-
gational pattern tree to efficiently predict and recommend
the n + 1th appropriate book to the user. A navigational
pattern tree consists of three parts shown in figure 3: a root
node, a header tree and a array of prefix subtree which is the
child of the root node.

The root node of a navigation pattern tree is made up of
three elements: itemName, count and childNodeLink, where
itemName is set to be null, count stores the number of se-
quential sessions in the navigation pattern tree, childNodeLink
points to a array of prefix subtree.

A prefix subtree node has four parts: itemName, count, child-
NodeLink and nodeLink, where itemName is the ID of the
accessed book, count is the accessed number of portion of
the path from root node to this node, childNodeLink points
to another prefix subtree node that represents subsequently
accessed book within the same session, nodeLink links to
other prefix subtree node carrying the same book ID in the
navigational pattern tree.

Each node in the header tree contains eight fields: item-
Name, count, leftNodeLink, rightNodeLink, color, topSub-
treeNodeLink, headSubtreeNodeLink and tailSubtreeNodeLink.
The field itemName registers the book ID. The total ac-
cess number of the book in the navigational pattern tree
is stored in the field count. Since we construct one kind
of binary balanced tree to store header nodes,leftNodeLink
links to header node carrying smaller book id, rightNodeLink
points to header node carrying bigger book id. When the
red-black tree is constructed, color field is set to red or
black accordingly. the insert and search time in red-black
tree is proportional to log(|book|), which is a great speedup
with respect to original link list implementation. That was
proved by the results of experiments in section 4. top-
SubtreeNodeLink is used to find the prefix subtree whose
first node carrying the same book id, which reduce signifi-
cantly the comparison cost when constructing the sequential
pattern tree because searching time in one million books
is reduced greatly. headSubtreeNodeLink links to the first
node carrying the same book id in the navigation pattern
tree.tailSubtreeNodeLink points to the last node carrying the
same book id in the navigation pattern tree.

Figure 4 is an example of constructed navigational pattern
tree at certain time.

3.4 Navigational Pattern Tree Construction
we proposed a set of routines to construct a navigational pat-
tern tree defined in previous section. The algorithm of con-
structing a navigational pattern tree consists of four seam-
lessly related routines: SPTreeConstruction, TopPrefixSub-
TreeNode,NextPrefixSubTreeNode and ConnectHeaderLinks.
The whole process of constructing a navigation pattern tree
is controlled in SPTreeConstruction. At the beginning, SP-
TreeConstruction reads one session from the RDB, then ex-
tract the first item from this one, call TopPrefixSubtreeNode
to do two things, one is to adjust header tree, the other is to
decide whether to create a new prefix subtree or reuse the
existing one. Next, on the rest of items within the session
is applied NextPrefixSubtreeNode, which takes charge of the
construction of prefix subtree and calls ConnectHeaderLinks
to adjust links from header node to the respective subtree
node. The detail of each routine is described as follow.

SPTreeConstruction accepts the trail database RDB as the
input, returns the Navigation Pattern Tree:

1 Create the Root Node. Initialize itemName to null, set
the count to 0.

2 Read the next available session T from RDB. Do step

3 - 6 ;

3 Pick the first item B1 of T and then pass it to Top-
PrefixSubtreeNode to get the prefix subtree node pre-
SubtreeNode. Create the link from RootNode to pre-
SubtreeNode, Increase count of Root Node by 1. Set
i = 1

4 i = i + 1; Get the next available item Bi; if Bi is null,

goto Step 6

5 Pass the preSubtreeNode and Bi to NextPrefixSub-
treeNode, which returns a prefix subtree node to up-

date preSubtreeNode. goto Step 4 .

6 goto Step 2 ;

7 After processing all transactions, return the naviga-
tional pattern tree containing Root Node, a set of Pre-
fix Subtree and a Header Tree.

TopPrefixSubtreeNode accepts the item name as the input,
returns the appropriate prefix subtree node.

1 search the header node carrying the same book id in
the red-black header tree,if found, continue; otherwise

goto step 5 ;

b10

2

black

TOP

H

T

b50

6

red

TOP

H

T

b60

1

black

TOP

H

T

b65

5

black

TOP

H

T

b70

7

black

TOP

H

T

b80

4

red

TOP

H

T

null 9 . . .

b70 3 C N

b10 2 C Nb50 4 C N b50 2 C N

b60 1 C N

b65 5 C N b70 4 C N

b80 2 C N

b80 2 C N

Figure 4: An example of navigational pattern tree

2 check whether its’ topSubtreeNodeLink is null. if null,

goto step 3 , otherwise goto step 4 ;

3 create a new prefix subtree node preSubtreeNode car-
rying the same book id and make topSubtreeNodeLink
link to it. Set the count in the new subtree node to 1.
Return preSubtreeNode;

4 get the prefix subtree node referenced by topSubtreeN-
odeLink, increase the count of it by 1.Return preSub-
treeNode;

5 insert new header node hNode carrying the same book
id; make its’ topSubtreeNodeLink and headSubtreeN-
odeLink link to a new created prefix subtree node pre-
SubtreeNode carrying the same book id. Set the count
of hNode and preSubtreeNode to 1. establish the link
between RootNode and preSubtreeNode. In the end,
return preSubtreeNode.

NextPrefixSubtreeNode below is used to handle the growth of
the prefix subtree. NextPrefixSubtreeNode accepts the pre-
fix subtree node PreSubtreeNode and the book Bi as argu-
ments, returns the appropriate prefix subtree node.

1 get the next available child node child of PreSubtreeN-

ode; if existed, continue; otherwise, goto Step 3 ;

2 if the item name of child equals the ID of Bi, increase
count of PreSubtreeNode by 1, return child; Otherwise

goto step 1 ;

3 create a new node preNode as the child of PreSub-
treeNode, then pass preNode to ConnectHeaderLinks
to adjust links between preNodeand the header node
in header tree carrying the same book id. Return preN-
ode.

The routine ConnectHeaderLinks accepts the prefix node
preNode as the argument;

1 search the red-black header tree for the book id carried

by preNode. If found, continue, otherwise goto step 3 .

2 name the matching header node header, get the prefix
subtree node prefixSubtreeNode referenced by tailSub-
treeNodeLink of header. Increase count of header by
1. Modify nodeLink of prefixSubtreeNode to point to
preNode. Modify tailSubtreeNodeLink of header to link
to preNode. Return;

3 create a new header node nHeader carrying the item
name of preNode, which is inserted into the red-black
header tree in at most log|headertree| time. Both tail-
SubtreeNodeLink and headSubtreeNodeLink of nHeader
are linked to preNode. Set count of nheader to 0. Re-
turn.

3.5 Recommendation Algorithm based on Nav-
igational Pattern Tree

Given a navigational pattern tree PTree, a historical sequen-
tial pattern Pa of a active reader and a minimum lift thresh-
old of 1, we bring our efforts to bear on predicting the next
|Pa| + 1-th book to the reader.

The whole algorithm is composed of four routines: Recom-
mend, FindFirstCandidates, FindNextCandidates, GroupAnd-
Prune. Recommend is the main procedure controlling the
whole process and manages the inputs and outputs of the
other three routines. The whole working scene of the algo-
rithm is described as follows: extract the first book B1 of
the historical sequential pattern Pa of active user, FindFirst-
Candidates generates the candidate set cadidates of prefix
subtree nodes carrying the same book id of B1. Then, get
the next available book Bi of Pa, apply FindNextCandidates

to Bi and candidates, limit the search space among the child
nodes of nodes in candidates, generate the candidate set of
i-th level prefix subtree nodes carrying the same book id of
Bi. In the end, select a subset of |Pa| + 1-th level prefix
subtree nodes as the recommendations, whose lift satisfies
the minimum threshold of 1.

Recommend accepts the PTree, Pa as arguments,returns the
candidate recommendation items delivered to the user:

1 extract the first item B1 of pattern Pa,

2 pass B1 to FindFirstCandidates to generate the can-
didate set candidates of prefix subtree nodes carrying
the same book id of B1. Set i = 0;

3 Increase i by 1. check whether i is less than the length
of the historical sequential pattern Pa. If yes, continue;

otherwise goto Step 5 .

4 pass the candidates and the ith item Bi of Pa to Find-
NextCandidates to update candidates carrying the same

book id of Bi. goto Step 3 .

5 pass candidates to GroupAndPrune which merges the
subtree nodes carrying the same book id, prunes the
infrequent items and returns the frequent ones as the
final recommendation.

FindFirstCandidates accepts the B1 as arguments, returns
the candidate set of subtree nodes carrying the same book
id of B1:

1 search the header node header carrying the same book
id of B1 from the red-black balanced header tree. if
found, continue; otherwise return;

2 get the subtree node candidateNode reference by headSub-
treeNodeLink of header, add it to the candidate set
candidates.

3 check whether nodeLink of candidateNode equals tail-
SubtreeNodeLink of header. if yes, return candidates,
otherwise continue.

4 set candidateNode to the subtree node referenced by
nodeLink of candidateNode. Add the new candidateN-
ode to the candidates, goto Step 3 .

FindNextCandidates accepts the candidates and Bi as argu-
ments, returns the ith-level candidate set nCandidates:

1 get the next available subtree node candidateNode
from candidates. If found, continue; otherwise return
nCandidates.

2 get the next available child node child of the candidate
nodes candidateNode. If found, continue; otherwise

goto step 1 ;

Table 1: The example of reading trail database
Access Sequence Occurrence
B65,B50,B70,B80 2
B65,B50 1
B65,B50,B70 1
B65,B50,B60 1
B70,B10 2
B70,B50,B80 2

3 check whether the book id of child equals the book
id of Bi, if yes, add child to nCandidates, otherwise

continue. goto Step 2 .

GroupAndPrune accepts the candidate set candidates of pre-
fix subtree node at level |Pa| as arguments:

1 Initialize a map Recommendation containing zero el-
ements. The |Pa| + 1 level prefix subtree node is the
key of map, the |Pa| level prefix node is the value of
map.

2 Get the next available subtree node candidateNode from

candidates, if existed, continue; otherwise goto Step 5

3 Get the next available child node child of candidateN-

ode, if existed, continue; otherwise goto Step 2 .

4 Search for child in the set Recommendation. If there
is a matching entry in the map, child1 and parent,
increase the count of child1 by the count of child, in-
crease the count of parent by the count of candidateN-
ode. Otherwise, add child and candidateNode to Rec-

ommendation map. Goto Step 3 .

5 Enumerate over the map, compute the respective lift

value child1.count
parent.count

× rootnode.count
header.count

, where the book id
of header is equal to that of child1. In the end, return
the set of keys child1, whose lift is above 1.

3.6 A Running Example
In this section, let me show a running example of NP-tree
construction and predicting recommendation based on NP-
tree. Table 1 is a recorded reading trail database, which
contains 6 books accessed during 9 sessions. There are five
types of access sequence listed in left column of table 1,
respective right column is the number of occurrence. B65
denotes that a book id is 65, which is regarded as the sorting
key in red-black header tree.

The RDB is recorded according to the time of occurrence of
reading. Hence {B65,B50,B70,B80} occurred first, {B65,B50}
occurred second, · · · . When analyzing the RDB sequently,
first encounter the session of {B65,B50,B70,B80}, looking
for B65 in the header tree containing zero elements. There-
fore insert header node of B65 into header tree, at the same
time create a prefix subtree node of B65 as a child of root
node and modify the top, head, tail pointers of header node
of B65 to link to prefix subtree node of B65. The processing
of B50, B70, B80 are like that of B65 except not modify-
ing top pointer and linking them as a branch in the prefix

subtree, since they are not the first element of the reading
session. The session of {B65, B50} is processed second, since
B65 is in the header tree, increase the count in the header
node of B65 and the prefix subtree node B65. So do pro-
cessing B50. Next is the session of {B65, B50, B70}, the
handling of it is similar to that of {B65,B50}. The handling
of the session {B65, B50, B60} is a little different because
the prefix subtree node B60 is another child of that of B50.
So do handling the rest of reading sessions. After process-
ing, we saw the result NP-tree with read-black header tree
in Figure4.

Suppose that one read a book B70, first identify the header
node of B70, use the head pointer of it to get the head prefix
subtree node of B70 in the branch {B65, b50, B70, B80 },
then B80 is one candidate recommendation. Furthermore,
alongside the nodeLink of former prefix subtree node of B70,
another that of B70 is got, its child includes {B10, B50}.
So the candidate recommendation set is {B80, B10, B50}.
The criteria of ranking is the lift computed by child.count

parent.count
×

rootnode.count
header.count

. The lift of B80 is 2
3
× 4

9
= 1.5 > 1, that of

B10 is 2
4
× 2

9
= 2.25 > 1, that of B50 is 2

4
× 6

9
= 0.75 < 1.

Therefore, {B10, B80} is the final recommendation list.

4. EXPERIMENTS
In this section, we report the experiments and respective
analyses performed on the real-world log data collected dur-
ing the 411 days from May,2006 to July,2007. All experi-
ments are performed on a computer with a CPU clock rate
of 3GHz(Intel Pentium 4 630) and 1GB of main memory.
All programs are written in Sun Java 1.5, and they ran on
the Microsoft Windows XP with SP2. Table 2 shows the
statistics of each attributes of real-world log datasets col-
lected by logging module of CADAL portal and the time of
original and proposed method at NP-tree construction and
recommendation.

1. MonthNum: The number of months within which the
log data was recorded. For instance, 4 in the second
row denote a time interval of 4 months, from May
11,2006 to September 10,2006.

2. LogNum: The number of log lines collected during the
respective number of months. The format of log lines
follows the W3C extended log file format, but just the
log lines related to reading book are reserved, other
useless lines,e.g. gif, jpg, are removed before exper-
iments. The total number of all valid log lines are
2,056,207 shown in the last row, whose time range cov-
ers the 13.5 months.

3. BookNum: The number of books read by internet users.
Up to July 1, 2007, 410,034 books were accessed, while
just 81,499 books are read one year ago.

4. SessionNum: The number of sessions of reading se-
quence of books, which are segmented according to
whether the value of time interval between reading
books exceeds the default timeout value of 30 minutes.
The average length of session is 2056207

266858
= 7.7,

5. UserNum: The number of users accessing books in
CADAL. Here one user means one unique ip address.

•
•

•

•

•

•

•

0

5

10

15

20

25

× ×
×

×

×

×
×

2 4 6 8 10 12 14
0

5

10

15

20

25

Month Num

Log Num
(×105)(×)

Transaction Num
(×104)(•)

Figure 5: The plot of log line number and respective
transaction number w.r.t month number

•
•

•

•

•

•

•

10

20

30

40

50

60

×
×

×
×

×
× ×

2 4 6 8 10 12 14

10

20

30

40

50

60

Month Num

Book Num
(×104)(×)

User Num
(×103)(•)

Figure 6: The plot of user number and book number
w.r.t the month number

The increase rate of users is roughly consistent with
the increase rate of books read, shown in figure 6.

The figure 5 shows that the change ratio of session number
rose up steadily with respect to the month number before or
after 8 months. Thus the lowest average number of books
read by user is 180809/121456 = 5.723. While the slope of
the number of log lines rose up steadily during 12 months,
the slope of the most recent 1.5 months dropped off a little,
approximately equal to the slop of from 6 to 10 months.
The steadily increasing number of log lines indicates that
the more people accessed the portal,the more books were
read.

The figure 6 shows that the slop of user number line is com-
pletely consistent with that of transaction number in figure
5 accordingly, which corresponds to our transaction identi-
fication rule of grouping transactions according to the user
ip address and timeout value. The trend of the number
of books accessed over time frame is one of steady, stable
growth. Up to July 1, 2007, users have accessed 410,034
unique books, which are just 41 percent of one million books
because only about 300,000 ancient and public domain digi-
tal books have been available to everyone, other copyrighted
books have been available to a few privileged persons.

The figure 7 demonstrates the total construction time of
navigation pattern tree with respect to the different dataset
over the different time frame, using original method [6] and
our proposed method. The total construction time depends
on two factors: one is the number of sessions in dataset, the
other is the algorithm of construction. From the figure 7 we
can see that the total construction time of proposed method
increase steadily as the number of sessions climbs. When

Table 2: The manifold statistics of logs and time of original and proposed algorithms over time frame
MonthNum LogNum BookNum SessionNum UserNum NPTTime(s) OrgNPTTime(m) RecomTime(s) OrgRecomTime(m)

2 72257 35631 13964 4625 8 1.9 18 1.2
4 179555 81499 33686 10072 28 9.4 24 4.2
6 370134 127970 73226 20111 8 25 103 8.5
8 630127 180809 121456 31592 165 52.6 110 40.75
10 1042008 317801 157922 40415 239 132.6 260 80.2
12 1822763 380832 213560 52358 393 281.2 227 137

13.5 2056207 410034 266858 63280 550 332 267 189

• • •
•

•

•

•

0

5000

104

1.5×104

2×104

× × × × × × ×

2 4 6 8 10 12 14

0

5000

104

1.5×104

2×104

Month Num

Proposed
(s)(×)

Orignial
(s)(•)

Figure 7: Time of building navigational pattern tree
w.r.t the month number. original method VS pro-
posed method

•
• •

•

•

• •

20

40

60

80

× × × × × × ×

0 2 4 6 8 10 12 14
0

20

40

60

80

Month Num

Proposed
(ms)(×)

Original
(ms)(•)

Figure 8: Average time of processing one session
w.r.t the month number. original method VS pro-
posed method

enumerating the sessions of first 2 month, the total time is
just 8 seconds. Even with the all 266,858 sessions over 13.5
months, the scalability of our algorithm is high, the total
time of NP tree construction is 550 seconds. But the con-
struction time using original method will increase in a order
of magnitude. The construction time over all log dataset
is about six hours. Furthermore, From the figure 8, we can
see clearly that original method quickly performs worse with
the increase of number of sessions. While the average time
per session of proposed method increases mildly, just from
0.57 to 2.06 milliseconds.

The figure 9 demonstrates the stable time cost of our recom-
mendation algorithm comparable to original method. The
real line shows the total recommendation time of proposed
method that are applied to all sessions in the dataset to
generate recommendation. The original method needs 3
hours to complete all recommendation process, while pro-
posed method just needs about 4 minutes to do so. The av-
erage recommendation time per session is calculated by the
formula RecomTime

SessionNum
. The average time of original method

fast climbs with the increase of session number. However,

• • •

•

•

•

•

0

2000

4000

6000

8000

104

1.2×104

× × × × × × ×

2 4 6 8 10 12 14

0

2000

4000

6000

8000

104

1.2×104

Month Num

Proposed
(s)(×)

Original
(s)(•)

Figure 9: Time of prediction for all historical ses-
sions w.r.t the month number. original method VS
proposed method

•
• •

•

•

•
•

10

20

30

40

× × × × × × ×

0 2 4 6 8 10 12 14
0

10

20

30

40

Month Num

Proposed
(ms)(×)

Original
(ms)(•)

Figure 10: Average time of prediction for one his-
torical session w.r.t the month number. original
method VS proposed method

from the zigzag line of our method in figure 10, we can see
that the average recommendation time per session of our
method is independent of the total number of sessions, one
recommendation according to the historical access sequence
just costs more or less 1 milliseconds.

5. CONCLUSIONS
CADAL has been a important digital library, many users
and books have been connected through our portal. To
achieve the goal of reducing the users’ time and energy cost
of finding valuable information in CADAL, we have provided
rule-based and mining-based personalized recommendation
services. In order to overcome the difficulty brought by the
large number of books, we proposed a new data structure of
NP-tree with red-black header tree and related algorithms.
The results of experiments proved the scalability and ef-
ficiency of proposed approach. In the future, we plan to
provide a few personalization services based on the multidi-
mensional hierarchical information, e.g. taxonomy of books,
locations of users etc.

6. REFERENCES

[1] R. Cooley, B. Mobasher, and J. Srivastava. Web
mining: Information and pattern discovery on the
world wide web. In ICTAI, pages 558–567, 1997.

[2] M. El-Sayed, C. Ruiz, and E. A. Rundensteiner.
Fs-miner: efficient and incremental mining of frequent
sequence patterns in web logs. In A. H. F. Laender,
D. Lee, and M. Ronthaler, editors, WIDM, pages
128–135. ACM, 2004.

[3] C. I. Ezeife and Y. Lu. Mining web log sequential
patterns with position coded pre-order linked
wap-tree. Data Min. Knowl. Discov., 10(1):5–38, 2005.

[4] L. Geng and H. J. Hamilton. Interestingness measures
for data mining: A survey. ACM Comput. Surv.,
38(3), 2006.

[5] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A
frequent-pattern tree approach. Data Min. Knowl.
Discov., 8(1):53–87, 2004.

[6] Y.-M. Huang, Y.-H. Kuo, J.-N. Chen, and Y.-L. Jeng.
Np-miner: A real-time recommendation algorithm by
using web usage mining. Knowl.-Based Syst.,
19(4):272–286, 2006.

[7] D. Knuth. The art of computer programming, volume
3: sorting and searching. Addison Wesley Longman
Publishing Co., Inc. Redwood City, CA, USA, 1998.

[8] M. Weiss. Data structures and algorithm analysis in
Java,2/E. Addison Wesley Publishing Co., Inc.
Redwood City, CA, USA, 2007.

[9] J. WU, Y. Zhuang, and Y. Pan. Technical features in
the Portal to CADAL. Journal of Zhejiang University
SCIENCE, 6(11):1249–1257, 2005.

[10] H. Zhang, Y. Zhuang, J. Wu, and F. Wu. Research on
grid-aware mechanisms and issues for cadal project. In
E. A. Fox, E. J. Neuhold, P. Premsmit, and
V. Wuwongse, editors, ICADL, volume 3815 of Lecture
Notes in Computer Science, pages 489–490. Springer,
2005.

