
Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1297

Optical Character Recognition for printed Tamil text
using Unicode

SEETHALAKSHMI R.†, SREERANJANI T.R.†, BALACHANDAR T.,

Abnikant Singh, Markandey Singh, Ritwaj Ratan, Sarvesh Kumar
(Shanmugha Arts Science Technology and Research Academy, Thirumalaisamudram, Thanjavur, Tamil Nadu, India)

†E-mail: rseetha123@cse.sastra.edu; trsree@yahoo.com
Received Aug. 5, 2005; revision accepted Sept. 10, 2005

Abstract: Optical Character Recognition (OCR) refers to the process of converting printed Tamil text documents into software
translated Unicode Tamil Text. The printed documents available in the form of books, papers, magazines, etc. are scanned using
standard scanners which produce an image of the scanned document. As part of the preprocessing phase the image file is checked
for skewing. If the image is skewed, it is corrected by a simple rotation technique in the appropriate direction. Then the image is
passed through a noise elimination phase and is binarized. The preprocessed image is segmented using an algorithm which de-
composes the scanned text into paragraphs using special space detection technique and then the paragraphs into lines using vertical
histograms, and lines into words using horizontal histograms, and words into character image glyphs using horizontal histograms.
Each image glyph is comprised of 32×32 pixels. Thus a database of character image glyphs is created out of the segmentation
phase. Then all the image glyphs are considered for recognition using Unicode mapping. Each image glyph is passed through
various routines which extract the features of the glyph. The various features that are considered for classification are the character
height, character width, the number of horizontal lines (long and short), the number of vertical lines (long and short), the hori-
zontally oriented curves, the vertically oriented curves, the number of circles, number of slope lines, image centroid and special
dots. The glyphs are now set ready for classification based on these features. The extracted features are passed to a Support Vector
Machine (SVM) where the characters are classified by Supervised Learning Algorithm. These classes are mapped onto Unicode
for recognition. Then the text is reconstructed using Unicode fonts.

Key words: OCR, Unicode, Features, Support Vector Machine (SVM), Artificial Neural Networks
doi:10.1631/jzus.2005.A1297 Document code: A CLC number: TP391

INTRODUCTION

Optical Character Recognition (OCR) deals with
machine recognition of characters present in an input
image obtained using scanning operation. It refers to
the process by which scanned images are electroni-
cally processed and converted to an editable text. The
need for OCR arises in the context of digitizing Tamil
documents from the ancient and old era to the latest,
which helps in sharing the data through the Internet.

Tamil language

Tamil is a South Indian language spoken widely
in TamilNadu in India. Tamil has the longest unbro-

ken literary tradition amongst the Dravidian lan-
guages. Tamil is inherited from Brahmi script. The
earliest available text is the Tolkaappiyam, a work
describing the language of the classical period. There
are several other famous works in Tamil like Kambar
Ramayanam and Silapathigaram but few support in
Tamil which speaks about the greatness of the lan-
guage. For example the Thirukural is translated into
most other languages due to its richness in content. It
is a collection of two sentence poems efficiently
conveying and few other things in a hidden language
called Slaydai in Tamil. Tamil has 12 vowels and 18
consonants. These are combined with each other to
yield 216 composite characters and 1 special charac-

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1298

ter (aayatha ezhuthu) counting to a total of (12+18+
216+1) 247 characters.

Vowels

Vowels in Tamil are otherwise called UyirEz-
huthu and are of two types short (Kuril) and long
(Nedil).

Consonants

Consonants are classified into three classes with
6 in each class and are called Vallinam, Idaiyinam,
and Mellinam.

Tamil Unicode

The Unicode Standard (http://www.unicode.org)
is the Universal Character encoding scheme for
written characters and text. It defines the uniform way
of encoding multilingual text that enables the ex-
change of text data internationally and creates the
foundation of global software. The Tamil Unicode
range is U+0B80 to U+0BFF. The Unicode characters
are comprised of 2 bytes in nature. For example, the
Unicode for the character is 0B85; the Unicode for
the character is 0BAE+0BC0. The Unicode is
designed for various other Tamil characters.

OCR FUNCTIONAL BLOCK DIAGRAM

The block diagram of OCR consists of various
states as shown in Fig.1. They are scanning phase,
preprocessing, segmentation, feature extraction,
classification (SVM, rule based, and ANN), Unicode
mapping and recognition and output verification.

OCR FUNCTIONS PHASE I

This phase includes the scanning state, pre-
processing block, segmentation and feature extrac-
tion.

Scanning the document

A properly printed document is chosen for scan-
ning. It is placed over the scanner. A scanner software
is invoked which scans the document. The document is
sent to a program that saves it in preferably TIF, JPG or
GIF format, so that the image of the document can be
obtained when needed. This is the first step in OCR
(VijayaKumar, 2001). The size of the input image is as
specified by the user and can be of any length but is
inherently restricted by the scope of the vision and by
the scanner software length.

Preprocessing

This is the first step in the processing of scanned
image. The scanned image is checked for skewing.
There are possibilities of image getting skewed with
either left or right orientation. Here the image is first
brightened and binarized. The function for skew de-
tection checks for an angle of orientation between ±15
degrees and if detected then a simple image rotation is
carried out till the lines match with the true horizontal
axis, which produces a skew corrected image. Fig.2a
shows the skewed image and skew corrected image
histograms and Fig.2b shows skewed and skew cor-
rected image. Skew correction is done by rotating the
image around an angle θ (−2.0) as shown in Fig.2c
(LTG, 2003; VijayaKumar, 2001).

Segmentation

After pre-processing, the noise free image is
passed to the segmentation phase, where the image is
decomposed into individual characters. Fig.3 shows
the image and various steps in segmentation.

Algorithm for segmentation:
 (1) The binarized image is checked for inter line

spaces.
(2) If inter line spaces are detected then the im-

age is segmented into sets of paragraphs across the
interline gap.

(3) The lines in the paragraphs are scanned for
horizontal space intersection with respect to the
background. Histogram of the image is used to detect

Feature extraction
(character height, width, horz lines, vertical lines, slope lines, …)

Preprocessing
binarization, skew detection and correction

Segmentation
(paragraphs, lines, words, characters)

 Classification (SVM based)

Unicode mapping

Scan document

Recognized text

Fig.1 Block diagram of OCR

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1299

the width of the horizontal lines. Then the lines are
scanned vertically for vertical space intersection.
Here histograms are used to detect the width of the
words. Then the words are decomposed into charac-
ters using character width computation. Fig.3a shows
the original image and Fig.3b shows the decomposi-
tion of image into single image character glyphs of
size 32×32 (LTG, 2003; VijayaKumar, 2001).

Feature extraction

This follows the segmentation phase of OCR
where the individual image glyph is considered and
extracted for features.

First a character glyph is defined by the follow-
ing attributes: (1) Height of the character; (2) Width
of the character; (3) Numbers of horizontal lines
present—short and long; (4) Numbers of vertical lines
present—short and long; (5) Numbers of circles pre-

sent; (6) Numbers of horizontally oriented arcs; (7)
Numbers of vertically oriented arcs; (8) Centroid of
the image; (9) Position of the various features; (10)
Pixels in the various regions.

The various feature extraction algorithms are as
follows:

Detection of character height and character
width: This is detected by simply scanning the image
glyph and finding the boundary of the glyph in the
horizontal and vertical directions.

 Height=30 and Width=20

1. Horizontal line detection
Here a mask is run over the entire image glyph

and thresholded which detects the horizontal line
(Gonzalez et al., 2004).

The mask is

Image glyph:
Result:
No_of_Horiz=1.
Algorithm for Horizontal Line Detection:

c[i][j]=img[i−1][j−1]×(−1)+img[i−1][j]×(−1)

+img[i−1][j+1]×(−1)+img[i][j−1]×2
+img[i][j]×2+img[i][j+1]×2
+img[i+1][j−1]×(−1)+img[i+1][j]×(−1)
+img[i+1][j+1]×(−1)

If (c[i][j]>0)
Increment q[i];

If (q[i]≥smallThreshold)

–1 –1 –1
–2 –2 –2
–1 –1 –1

(a)

(b)

Fig.3 (a) Original text; (b) Character segmentation (32×32
glyph)

Skewed Corrected

(a)

(b)

Fig.2 (a) Histograms for skewed and skew corrected im-
ages; (b) Skewed image; (c) Skew corrected and preproc-
essed image

(c)

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1300

 Small horizontal line is detected
Else

If (q[i]≥longThreshold)
Long Horizontal line is detected;

2. Vertical line detection
Here a mask is applied over the entire range of

pixels and thresholded which detects the vertical line
(Gonzalez et al., 2004).

The mask is

Image glyph:
Result:
The number of vertical lines is 1.
Algorithm for vertical line detection:

c[i][j]=img[i−1][j−1]×(−1)+img[i−1][j]×2

+img[i−1][j+1]×(−1)+img[i][j−1]×(−1)
+img[i][j]×2+img[i][j+1]×(−1)
+img[i+1][j−1]×(−1)+img[i+1][j]×2
+img[i+1][j+1]×(−1)

If (c[i][j]>0)
Increment q[i];

If (q[i]≥smallThreshold)
Short vertical line is detected

Else
If (q[i]≥longThreshold)

Long vertical line is detected;

3. Slope lines detection
The masks for the slope lines are as follows:

--+45 –45

To detect slope lines these masks are applied

over the image and then thresholded suitably.
4. Detection of circles and arcs
Here a new mask is derived and operated on each

and every pixel in the image glyph and thresholded
which detects the circle. A 5×5 mask is taken. The
arcs are detected using the circle detection algorithm
and checked for the semi-circle and diameter (Gon-
zalez et al., 2004).

The mask for circle is

OCR FUNCTIONS—PHASE II

The second phase of the OCR functions consists
of classification and Unicode mapping and recogni-
tion strategies.

Classification

Classification is done using the features ex-
tracted in the previous step, which corresponds to
each character glyph. These features are analyzed
using the set of rules and labelled as belonging to
different classes. This classification is generalized
such that it works for all the fonts’ types (Rosenfeld
and Kak, 1969).

1. A typical rule based classifier

If ((Numbers of short horizontal lines==0) and
(No of long horizontal lines==1) and (Numbers of
short vertical lines==0) and (Numbers of long vertical
lines==1) and (Numbers of circles==1) and (Numbers
of Horizontally oriented Arcs==1) and (Numbers of
Vertically Oriented Arcs==1))

Then the character is .

The height of the character and the width of the
character, various distance metrics are chosen as the
candidate for classification when conflict occurs.
Similarly the classification rules are written for other
characters. This method is a generic one since it ex-
tracts the shape of the characters and need not be
trained. When a new glyph is given to this classifier
block it extracts the features and compares the fea-
tures as per the rules and then recognizes the character
and labels it.

2. Backpropagation based Classifier
Here a Backpropagation based Artificial Neural

Network is chosen for classification because of its
simplicity and ease of implementation. The architec-
ture consists of three layers: Input, hidden and output.
The features extracted are passed through various
layers and the BPN algorithm is used to determine the
output of each node, error back propagated and cor-
rected. Thus after few iterations the error is reduced

–2 –1 –1
–1 2 –1
–1 –1 2

2 2 2 2 2
2 –1 –1 –1 2
2 –1 –1 –1 2
2 –1 –1 –1 2
2 2 2 2 2

–1 –1 2
–1 2 –1
 2 –1 –1

–1 2 –1
–1 2 –1
–1 2 –1

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1301

and the character glyphs are recognized.
3. Support Vector Machine (SVM) based Clas-

sifier
The next architecture chosen for classification,

which in turn involves training and testing is Support
Vector Machines (SVM). The use of Support Vector
Machine (SVM) classifiers has gained immense
popularity in recent years. SVMs have achieved ex-
cellent recognition results in various pattern recogni-
tion applications. Also in off-line optical character
recognition (OCR) they have been shown to be
comparable or even superior to the standard tech-
niques like Bayesian classifiers or multilayer percep-
tions. SVMs are discriminative classifiers based on
Vapnik’s structural risk minimization principle. They
can implement flexible decision boundaries in high
dimensional feature spaces. The implicit regulariza-
tion of the classifier’s complexity avoids overfitting
and mostly this leads to good generalizations. Some
more properties are commonly seen as reasons for the
success of SVMs in real-world problems. The opti-
mality of the training result is guaranteed, fast train-
ing algorithms exist and little a-priori knowledge is
required, i.e. only a labelled training set.

Classification using SVM

Support Vector Machines are based on the con-
cept of decision planes that define decision bounda-
ries. A decision plane is one that separates a set of
objects having different class memberships. A typical
example is shown in Fig.4 where it is used to classify
different types of character glyphs belonging to dif-
ferent Tamil fonts.

Support Vector Machine (SVM) is primarily a
classier method that performs classification tasks by
constructing hyperplanes in a multidimensional space
that separates cases of different class labels. SVM
supports both regression and classification tasks and
can handle multiple continuous and categorical varia-

bles. To construct an optimal hyperplane, SVM em-
ployees an iterative training algorithm, which is used
to minimize an error function. According to the form
of the error function, SVM models can be classified
into two distinct groups: Classification SVM Type 1
(also known as C-SVM classification); Classification
SVM Type 2 (also known as nu-SVM classification).

Classification SVM Type 1

For this type of SVM, training involves the
minimization of the error function:

T

1

1 +
2

N

i
i

C ξ
=
∑w w

subject to the constraints:

yi(wTφ(xi)+b)≥1−ξi and ξi ≥0, i=1, …, N

where C is the capacity constant, w is the vector of
coefficients, b a constant and ξi are parameters for
handling nonseparable data (inputs). The index i label
the N training cases. Note that y∈±1 represents the
class labels and xi is the independent variables. The
kernel φ is used to transform data from the input (in-
dependent) to the feature space. It should be noted that
the larger the C, the more the error is penalized. Thus,
C should be chosen with care to avoid over fitting.

Classification SVM Type 2

In contrast to Classification SVM Type 1, the
Classification SVM Type 2 model minimizes the
error function:

T

1

1 1+
2

N

i
i

v
N

ρ ξ
=

− ∑w w

subject to the constraints:

yi(wTφ(xi)+b)≥ρ−ξi and ξi ≥0, i=1, …, N; ρ≥0

Kernel functions
There are a number of kernels that can be used in

Support Vector Machines models. These include
linear, polynomial, radial basis function (RBF) and
sigmoid:

Fig.4 Classification using SVM

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1302

degree

2

 Linear

(+coefficient) Polynomial
=

exp() RBF

tanh(+coefficient) Sigmoid

i j

i j

i j

i j

x x

x x

x x

x x

γ
φ

γ

γ

- -

The RBF is by far the most popular choice of

kernel type used in Support Vector Machines. This is
mainly because of their localized and finite responses
across the entire range of the real x-axis.

SVM consists of a learning module (svm_learn)
and a classification module (svm_classify). The
training model takes the input file, target file and
trains the network. In the classification model, the
various class labels like class1, 2, and 3, …, 247 are
given. Thus the SVM learns and produces correct
labels of the classes.

SVM has the following points added to its credit,
such as, learning is much faster especially for large tr-
aining sets; working set selection based on steepest
feasible descent; “shrinking” heuristics; improved
caching; new solver for intermediate queries; let any-
one set the size of the cache; simplified output format
of svm_classify and data files may contain comments.

Unicode mapping

The Unicode standard reflects the basic principle
which emphasizes that each character code has a
width of 16 bits. Unicode text is simple to parse and
process, and Unicode characters have well defined
semantics. Hence Unicode is chosen as the encoding
scheme for the current work (Unicode, 2000). After
classification the characters are recognized and a
mapping table is created in which the unicodes for the
corresponding characters are mapped. Table 1 shows
one such rule based classifier based on Tamil Unicode.

Character recognition
The scanned image is passed through various

blocks of functions and finally compared with the
recognition details from the mapping table from
which corresponding unicodes are accessed (Table 1)
and printed using standard Unicode fonts so that the
OCR is achieved (Unicode, 2000).

EXPERIMENTAL RESULTS

The OCR is implemented in Microsoft .NET
using C#. Various experimental results are discussed
below. Fig.5 of the segmentation phase output dis-
plays on the left side the original image and on the
right side the segmented image. Fig.6 represents the
feature extraction and rule based classification of
vowels with Unicode and Fig.7 the feature extraction
and rule based classification of consonants with
Unicode. Figs.8, 9 and 10 represent the typical sce-
narios in the recognition of Tamil text using C# in the
Microsoft .NET environment using Microsoft DLLs.

OCR ANALYSIS

A complete analysis is done for the classification
and recognition stages and various charts are depicted
for clarity. A comparative study on various classifiers
was also conducted.

Analysis of classifiers

1. BPN based classifier output
An ANN based classifier used for classification

is tested with minimum features (horizontal lines,
vertical lines, circles and arcs). The target is the
Unicode. The RMSE is shown to be tolerable.

Training samples:

 Fig.5 Output of segmentation Fig.6 Output of feature extraction and recognition
—vowels

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1303

1; 1; 1; 1; 1; 0; 0b85; 0;
1; 1; 2; 1; 1; 0; 0b87; 1;
0; 1; 1; 3; 2; 1; 0b88; 1;
1; 2; 0; 0; 0; 0; 0b89; 1;

2. Output RMSE
All the patterns are recognized with a root mean

square error of 0.001 (tolerance).

0.0014195762512018836
0.001387192298036475

0.0013230704791920018
0.0015672780143078655

Comparison of various classifiers given in Table

2 and Fig.11 of the chart comparing strategies like
SVM, BPN, Hybrid, Conventional Rule based Clas-

Table 1 Sample mapping
Features extracted Classified character Class label Unicode
No of short horizontal lines==0
No of short vertical lines==0
No of long horizontal lines==1
No of vertically oriented arcs==1
No of circles==1
No of horizontally oriented arcs==1
Height=23
Width=20
If input==target then the character is

…

1
1
1

0x0b85

+ one horizontal arc and one vertical arc

…

2
2
2

0x0b86

… Next character

Fig.7 Output of feature extraction and recognition
—consonants Fig.8 OCR using C# in Microsoft .NET framework

Fig.9 A scenario depicting recognition of Tamil text Fig.10 A scenario depicting recognition of Tamil text

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1304

sifiers, shows that SVM gives consistently good per-
formance. Five font types like Arial Unicode MS,
Anjal (Nalinam), Amudham, Elango, Shree_tam
fonts are considered for recognition. Table 3 shows
the SVM learning results and Fig.12 the correspond-
ing chart and Table 4 shows the SVM classification
results and Fig.13 their chart.

CONCLUSION

OCR is aimed at recognizing printed Tamil
document. The input document is read preprocessed,
feature extracted and recognized and the recognized
text is displayed in a picture box. Thus the Tamil OCR
is implemented using a C# Neural Network library. A
complete tool bar is also provided for training, rec-
ognizing and editing options.

Tamil is an ancient language. There are millions
and billions of books which are written by numerous
well known authors. Maintaining and getting the
contents from and to the books is very difficult. OCR
eliminates the difficulty by making the data available
in printed format. In a way OCR provides a paperless

environment. OCR provides knowledge exchange by
easier means. If the knowledgebase of rich Tamil
contents is created, it can be accessed by people of
varying category with ease and comfort. Still there are
scholars who are interested in accessing the contents
to look for knowledge.

OCR is currently used to maintain the history of
students in universities. If OCR is available then
processing and maintaining the students’ records
become easier. The students’ forms can be directly

Table 2 Comparison of classifiers
Type of classifier Fonts Error Effi.
Typical Rule Based 1 0 100%
Typical Rule Based 2 or more 0.2 080%
BPN 1 0.00457 100%
BPN 2 or more 0.5000 050%
SVM Single font 0.001 100%
SVM Multifont 0.0001 100%

Table 3 SVM learning results

Number
of fonts

Number
of SVs

Empirical
risks L1 loss Object

value
1 3 0.666667 7.12879E–5 –0.405021
2 4 0.800000 0.8027070000 –1.300040
3 4 0.142857 0.0002620480 –0.405014
4 4 0.111111- 0.0003322250 –0.405017
5 5 0.750000 0.0019926600 –0.405015

Table 4 SVM classify results
Number of

fonts Accuracy Precision Recall

1 66.66667% 50.00000% 100.000%
2 60.00000% 100.00000% 100.000%
3 57.14286% 50.00000% 100.000%
4 55.55556% 50.00000% 100.000%
5 50.00000% 45.45455% 100.000%

Fig.11 Chart comparing No_of_Fonts and classifier effi-
ciency

C
la

ss
ifi

er
 st

at
is

tic
s

1.2

0.8

0.4

1 1 Single
font

Typical rule
based

Typical
rule

SVM

No_of_Fonts per classifier

Error Efficiency

2
or more

0.0
2

or more
Multi-
font

SVM ANN
(BPN)

ANN
(BPN)

Fig.12 SVM learning results

No_of_Fonts

Le
ar

ni
ng

 st
at

is
tic

s

Number of SVs
Empirical Risks

L1 Loss
Object Value

–2

–1

0

1

2

3

4

5

6

1 2 3 4 5

Fig.13 Chart for classification results

No_of_Fonts

0

20

40

60

80

100

120

1 2 3 4 5

C
la

ss
ifi

er
 st

at
is

tic
s (

%
)

Accuracy Precision Recall

Seethalakshmi et al. / J Zhejiang Univ SCI 2005 6A(11):1297-1305 1305

scanned, extracted for details and directly trans-
formed into a Student Database.

OCR can also play a major role in the business
environment. OCR reduces cost and effort by elimi-
nating manual data entry, etc. If OCR is available, it
becomes easier to extract and transform the data into
business BASE and promote business without the
need for large mobility (data, people). The increasing
number of faxes and paper documents received by
businesses often originate from the same suppliers or
customers and have a format and layout that have not
changed for some time. The data within these docu-
ments have to be manually interpreted and re-keyed
into business applications as part of key business
processes (e.g. Purchase Orders and Invoices into
Accounting Systems for Accounts Receivables and
Payables, students data etc.). The larger the volume of
documents received, the greater the manual resource
required entering the data into business applications.
The scope for errors and delay to critical business
processes also increases as volume increases, if it is
handled manually. By scanning the documents to
create TIFF image files and automatically routing
electronic fax images to OCR, the errors, cost and
delay of manual data entry can be avoided, as OCR can
automatically extract data from the documents and for-

mat the data for onward delivery to other applications.
Thus this paper discusses the various strategies and
techniques involved in the recognition of Tamil text.

ACKNOWLEDGEMENTS

We thank Microsoft Corporation of India (P)
Ltd., for funding our project on Tamil OCR towards
Digital Library Project at SASTRA. We would like to
convey our gratitude to SERC-IISc, Bangalore for
giving support to acquire this project. We also thank
SASTRA for the infrastructure, other facilities and
support provided towards the completion of this pro-
ject.

References
LTG (Language Technologies Group), 2003. Optical Charac-

ter Recognition for Printed Kannada Text Documents.
SERC, IISc Bangalore.

VijayaKumar, B., 2001. Machine Recognition of Printed
Kannada Text. IISc Bangalore. The Unicode Standard
Version 3.0, Addison Wesley.

Gonzalez, R.C., Woods, R.E., Eddins, S.L., 2004. Digital
Image Processing Using MATLAB. PHI Pearson.

Unicode, 2000. The Unicode Standard Version 3.0. Addison
Wesley.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

